A study on the ability of Support Vector Regression and Neural Networks to Forecast Basic Time Series Patterns

نویسندگان

  • Sven F. Crone
  • Jose Guajardo
  • Richard Weber
چکیده

Recently, novel learning algorithms such as Support Vector Regression (SVR) and Neural Networks (NN) have received increasing attention in forecasting and time series prediction, offering attractive theoretical properties and successful applications in several real world problem domains. Commonly, time series are composed of the combination of regular and irregular patterns such as trends and cycles, seasonal variations, level shifts, outliers or pulses and structural breaks, among others. Conventional parametric statistical methods are capable of forecasting a particular combination of patterns through ex ante selection of an adequate model form and specific data preprocessing. Thus, the capability of semi-parametric methods from computational intelligence to predict basic time series patterns without model selection and preprocessing is of particular relevance in evaluating their contribution to forecasting. This paper proposes an empirical comparison between NN and SVR models using radial basis function (RBF) and linear kernel functions, by analyzing their predictive power on five artificial time series: stationary, additive seasonality, linear trend, linear trend with additive seasonality, and linear trend with multiplicative seasonality. Results obtained show that RBF SVR models have problems in extrapolating trends, while NN and linear SVR models without data preprocessing provide robust accuracy across all patterns and clearly outperform the commonly used RBF SVR on trended time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Forecasting Gold Price using Data Mining Techniques by Considering New Factors

Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Modeling and forecasting US presidential election using learning algorithms

The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006